Full Depth Reclamation (SFDR)
Keys to Success

- Pavement & material assessment
- Engineered mix design
 - Choose correct additive for the application
- Performance-related specifications
- Construction guidelines & QC specs
Full Depth Reclamation (FDR) Keys to Success

Engineered Mix Design

Superpave Gyratory Compactor

Cohesiometer

Lab Mixer
Engineered Mix Design

- Virgin aggregate or RAP may be needed
 - To increase depth of finished structural layer
 - To improve gradation
 - Cleanliness (P200)
 - Material quality
 - Grading

Add rock
Stabilization Options

- Cutbacks/Roadmix
- Proprietary Products
- Engineered Emulsion
- Lime/chlorides
- Foamed Asphalt
- Flyash/Cement
- Combinations of above
Full Depth Reclamation (SFDR) Keys to Success

Stabilization Considerations

Prone to Rutting

Prone to Cracking

Surface

Flexible

Stiff

Granular A

Organic Clay B

Subbase

LRRB Pavement Rehabilitation Selection
Full Depth Reclamation (SFDR) Keys to Success

Stabilization Considerations

- Cutbacks or Road Mix
- Proprietary Products
- Engineered Emulsion
- Foam Asphalt or Lime
- Fly Ash or Cement

Prone to Rutting: Flexible
Prone to Cracking: Stiff
Granular: Organic Clay

LRRB Pavement Rehabilitation Selection
Stabilization Considerations

- Engineered Emulsion Technology is formulated for:
 - High asphalt content
 - Good dispersion with higher film thickness
 - Durable
 - Flexible
 - Climate-specific binder
 - Formulated for each project
Stabilization Considerations

- **Fly Ash or Cement Stabilization**
 - Mill to 3”- material
 - Can incorporate some plastic subgrade soils
 - Cement addition rate of 2-4% by weight, fly ash addition rate of 6-10% by weight
 - Short working time due to hydration
 - Specific design for each project
 - Higher stiffness, lower flexibility
Performance-Related Specification Guidelines

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Performance Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Term Strength by Cohesiometer</td>
<td>ASTM D1560</td>
</tr>
<tr>
<td>Retained Strength</td>
<td>ASTM D4867</td>
</tr>
<tr>
<td>Resilient Modulus</td>
<td>ASTM D4123</td>
</tr>
<tr>
<td>Indirect Tensile Test (IDT)</td>
<td>AASHTO T 322</td>
</tr>
<tr>
<td>Construction & QA/QC Requirements</td>
<td></td>
</tr>
</tbody>
</table>

Tests run on 150-mm SGC prepared specimens

Full Depth Reclamation (SFDR)
Keys to Success
Full Depth Reclamation (SFDR)
Keys to Success

Construction and Quality Control

• **Equipment**
 – Reclaimer
 – Padfoot compactor
 – Motor grader
 – Water truck
 – Finishing Rollers
Construction and Quality Control - Reclaimer

• Typically used in FDR construction

• Typical properties:
 – Center mount cutter
 – 8- or 10-ft wide
 – Accurate emulsion addition
 – Emulsion added to enclosed mixing drum
 – Cement or fly ash added after first pass of reclaimer
 – Road is usually reclaimed a third at a time
Full Depth Reclamation (SFDR) Keys to Success

Construction and Quality Control - Padfoot Compactor

- Best for achieving compaction at bottom of layer
- High amplitude/ low frequency
- Back drag blade preferred
- Examples:
 - CAT CP 563C or 563D (rounded pads)
 - Hamm and Hypac
 - SuperPac (34,000 lb)
 - Hyster (28,000 lb)
Full Depth Reclamation (FDR) Keys to Success

Construction and Quality Control - Motor Grader
Construction and Quality Control - Water Truck

- Many varieties / homemade
- Ability to apply a uniform spray over the width of road
- Adjust initial moisture content, if needed
- Aids in final compaction and appearance
Full Depth Reclamation (SFDR) Keys to Success

Construction and Quality Control - Finishing Rollers

- Achieve surface compaction & final appearance
- Pneumatic roller
 - 20-ton minimum
 - 90 psi tire pressure
- Vibratory steel roller
 - 10-ton minimum
 - low amplitude/ high frequency
Construction and Quality Control

- **Field Testing**
 - Specific tests & testing frequency determined by agency & road requirements
 - Water content
 - Depth
 - Top size
 - Additive content
 - Compaction
 - Modified Proctor for target density
 - Traffic return
Construction and Quality Control

- Corrective actions
 - Sub-cut & replace weak spots
 - Fix drainage
 - Fix thickness deficiency
 - Add rock
 - Widen
- Cut out soil
Full Depth Reclamation (SFDR)

Keys to Success

Construction and Quality Control

• Surfacing
 – To support needs of road
 – Structural
 • Traffic
 • Load levels
 – Climate
 – Chip seal at a minimum

Chip Seal

HMA Overlay

Concrete Overlay
Full Depth Reclamation (SFDR)
FDR Expectations

• Site Assessment Critical
 – Can’t fix poor subgrades
 – If pre-construction assessment not done (borings, FWD, etc.), problems should be addressed during construction

• Amount of fines must be manageable
 – If surface or gravel base too thin, may have too many fines unless sufficient additional rock can be added
Full Depth Reclamation (SFDR)
FDR Expectations

• Construction start-up expectation
 – Additives shouldn’t be added until moisture content is corrected, most notably
 • On all-gravel roads
 • In heavy rainfall or high water table areas

• Account for variability in road
 – Sufficient sampling & testing
 – Adjust as necessary during construction
Full Depth Reclamation (SFDR)
FDR Expectations

• May require multiple reclaimer passes
 – For adequate sizing
 – For emulsion dispersion (high fines)
 – For moisture management

• Manage time to compaction when using additives
 – Too soon, soft areas
 – Too late, raveling
Full Depth Reclamation (SFDR)
FDR Expectations

- Traffic control
 - Road may need to be closed during working day
 - Requires working full width of road
 - During construction, local traffic may need access to road if the full road width is being processed
 - During construction, constructing one lane at a time will require a pilot vehicle or an extra lane
Full Depth Reclamation (SFDR) Applications for SFDR

- Good Candidates include pavements with:
 - Need for upgrading, widening or rehabilitation
 - Bituminous surface on compacted base that:
 - Has sufficient depth to accommodate reclamation process (at least 2" greater than reclamation depth)
 - Exception: Compatible native materials meeting P200 & SE requirements
 - Generally has up to 20% fines (P200)
Full Depth Reclamation (SFDR)
Applications for SFDR

• Good Candidates (Continued):
 – High severity distresses
 • Ruts
 • Base problems
 • Cracks
 • Edge failures
 • Potholes
 – Good drainage or drainage to be corrected
Full Depth Reclamation (SFDR) Applications for SFDR

• Poor Candidates include pavements with:
 – Clay-like native soils
 • Exception - can be stabilized with fly ash or cement
 – Doesn’t meet P200 criteria & can’t or won’t accept added rock
 – Drainage problems
 • Including ditch & regional flooding problems
Full Depth Reclamation (SFDR) Summary

• Builds structure down into pavement
 – Site assessment, sampling & mix design key to success
 – Performance-related design tests & specs improve reliability & performance
 • Early Strength
 • Cured Strength
 • Cracking Resistance
 • Moisture Resistance
 • QA / QC
CIR and SFDR Considerations:

- What is the depth of my existing pavement?
 - CIR is best for pavements at least 5” thick
 - FDR / SFDR is for any depth

- Is the pavement thickness consistent or variable?
 - FDR is better for variable thickness pavements
CIR and SFDR Considerations (Continued):

• What is the condition and strength of the pavement base and subbase?
 – CIR requires base support for the heavy train equipment
 – FDR/SFDR will break up cracking patterns in the base

• What is the required ease of construction?
 – CIR is all done at once
 – SFDR has greater difficulty in getting material placed
CIR and SFDR Differences

For CIR processes a mobile screen deck and pugmill are used to process aggregate and incorporate emulsions, foamed asphalt and/or other liquids or solids.
Cold Central Plant Recycling (CCPR)

- Stockpile RAP (QC very important)
- Crush RAP (Fractionation)
- Mix with Binder (Formulated for project)
- Transport to Project (Handling Time)
- PAVE (Bound recycled mix)
- Compact to specified density
- Apply Surface Treatment or Overlay